Global Dynamics of a Delayed Diffusive Two–strain Disease Model

نویسندگان

  • DANXIA CHEN
  • ZHITING XU
چکیده

The aim of this paper is to investigate the global dynamics of a delayed diffusive twostrain disease model. We first study the well-posedness of the model. And then, by selecting appropriate Lyapunov functionals, we demonstrate that the global stability of the model is fully determined by the basic reproduction number. Furthermore, using Schauder fixed point theorem and constructing a pair of upper-lower solutions, we show that the model admits a traveling wave solution connecting the disease free and co-existence equilibria. Mathematics subject classification (2010): 34K20, 35C07, 35K57, 92D30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

Mathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies

An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...

متن کامل

Mathematical Model of Novel COVID-19 and Its Transmission Dynamics

In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...

متن کامل

Gait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator

The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...

متن کامل

Stability ‎a‎nalysis of the transmission dynamics of an HBV model

‎Hepatitis B virus (HBV) infection is a major public health problem in the world today‎. ‎A mathematical model is formulated to describe the spread of hepatitis B‎, ‎which can be controlled by vaccination as well as treatment‎. ‎We study the dynamical behavior of the system with fixed control for both vaccination and treatment‎. ‎The results shows that the dynamics of the model is completely de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016